- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Ganguly, Samiran (2)
-
Ghosh, Avik W (2)
-
Gu, Yunfei (2)
-
Morshed, Md Golam (2)
-
Stan, Mircea R (2)
-
Stan, Mircea R. (2)
-
Dhar, Nibir K. (1)
-
Dutta, Achyut K. (1)
-
Ghosh, Avik W. (1)
-
Mullick, Faiyaz E (1)
-
Sakib, Mohammad Nazmus (1)
-
Sreekumar, R (1)
-
Vakili, Hamed (1)
-
Verma, Vaibhav (1)
-
Yan, Dengxue (1)
-
Zhang, Xuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Sreekumar, R; Mullick, Faiyaz E; Morshed, Md Golam; Ghosh, Avik W; Stan, Mircea R (, IEEE)
-
Gu, Yunfei; Yan, Dengxue; Verma, Vaibhav; Stan, Mircea R.; Zhang, Xuan (, Design Automation Conference)
-
Hardware based spatio-temporal neural processing backend for imaging sensors: Towards a smart cameraGu, Yunfei; Ganguly, Samiran; Stan, Mircea R.; Ghosh, Avik W.; Dhar, Nibir K.; Dutta, Achyut K. (, Image Sensing Technologies: Materials, Devices, Systems, and Applications V)In this work we show how we can build a technology platform for cognitive imaging sensors using recent advances in recurrent neural network architectures and training methods inspired from biology. We demonstrate learning and processing tasks specific to imaging sensors, including enhancement of sensitivity and signal-to-noise ratio (SNR) purely through neural filtering beyond the fundamental limits sensor materials, and inferencing and spatio-temporal pattern recognition capabilities of these networks with applications in object detection, motion tracking and prediction. We then show designs of unit hardware cells built using complementary metal-oxide semiconductor (CMOS) and emerging materials technologies for ultra-compact and energy-efficient embedded neural processors for smart cameras.more » « less
An official website of the United States government
